by showmyiq » Tue Apr 30, 2013 7:49 am
OK, I do agree about the last row.
\begin{equation}
(10^{3n+1} + 2*5*10^{2n} + 25)/9 \\
\end{equation}
My first thought here is to prove that this is natural number for every n.
Indeed the sum of the digits of this number, for every n>0 will be 27.
27 is dividable by 9, equal 3, so the whole number will be a square number, only if the nominator is a square number (because the denominator is a square number 9 equals 3^2).
Ok, so far – so good!
But why we do the assumption that the only suitable value is only when 4n=3n+1?
I do agree that 4n is excellent square number in the given circumstances:
\begin{equation}
10^{4n} + 2*5*10^{2n} + 25 = (10^{2n} + 5)^2 \\
\end{equation}
But why we conclude that 4n is the only suitable value?
Can we prove the other values will not hit some random square?
I have just written this simple C# code to analyze the issue further.
Imagine we have this similar equation to our:
\begin{equation}
2^{i+2} +2*2^i*1 + 1 \\
\end{equation}
If we use the same approach we should conclude that the only square number here is when i+2 = 2i, or i=2 is the only solution. But check this out:
i=0,Sum=7,SQRT=2.64575131106459
i=1,Sum=13,SQRT=3.60555127546399
i=2,Sum=25,SQRT=5
i=3,Sum=49,SQRT=7
i=4,Sum=97,SQRT=9.8488578017961
i=5,Sum=193,SQRT=13.8924439894498
i=6,Sum=385,SQRT=19.6214168703486
i=7,Sum=769,SQRT=27.7308492477241
i=8,Sum=1537,SQRT=39.2045915678253
i=9,Sum=3073,SQRT=55.4346462061408
i=10,Sum=6145,SQRT=78.390050389064
i=11,Sum=12289,SQRT=110.855762141623
i=12,Sum=24577,SQRT=156.770532945449
i=13,Sum=49153,SQRT=221.704758631835
i=14,Sum=98305,SQRT=313.536281792076
i=15,Sum=196609,SQRT=443.406134373443
i=16,Sum=393217,SQRT=627.070171511929
i=17,Sum=786433,SQRT=886.810577293708
i=18,Sum=1572865,SQRT=1254.13914698489
i=19,Sum=3145729,SQRT=1773.62030885982
i=20,Sum=6291457,SQRT=2508.27769594995
i=21,Sum=12582913,SQRT=3547.24019485571
i=22,Sum=25165825,SQRT=5016.55509288994
i=23,Sum=50331649,SQRT=7094.48017827945
i=24,Sum=100663297,SQRT=10033.1100362749
i=25,Sum=201326593,SQRT=14188.9602508429
i=26,Sum=402653185,SQRT=20066.2199977973
i=27,Sum=805306369,SQRT=28377.9204488278
i=28,Sum=1610612737,SQRT=40132.4399582183
i=29,Sum=3221225473,SQRT=56755.8408712266
i=30,Sum=6442450945,SQRT=80264.8798977486
i=31,Sum=12884901889,SQRT=113511.681729239
i=32,Sum=25769803777,SQRT=160529.759786153
i=33,Sum=51539607553,SQRT=227023.36345187
i=34,Sum=103079215105,SQRT=321059.519567634
i=35,Sum=206158430209,SQRT=454046.726900437
i=36,Sum=412316860417,SQRT=642119.039132932
i=37,Sum=824633720833,SQRT=908093.453799222
i=38,Sum=1649267441665,SQRT=1284238.0782647
i=39,Sum=3298534883329,SQRT=1816186.90759762
It appears that i=3 is another solution too!
Here is the source to see what is going under the results:
using System;
class Program
{
static void Main()
{
for (long i = 0L; i < 40; i++)
{
long S = Convert.ToInt64(Math.Pow(2, i + 2)) + 2 * 1 * Convert.ToInt64(Math.Pow(2, i)) + 1;
double check = Math.Sqrt(S);
Console.WriteLine("i={0},Sum={1},SQRT={2}",i,S,check);
}
}
}
I think the probability to hit a square number in future is close to 0, but can we say it is equal to 0?